Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 326(3): H490-H496, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38133618

RESUMO

Vaping has risen substantially in recent years, particularly among young adults. Electronic (e-) hookahs are a newer category of vaping devices touted as safer tobacco alternatives. Although e-hookah vaping acutely reduces endothelial function, the role of nicotine and the mechanisms by which it may impair endothelial function remain understudied. In a randomized crossover study, we investigated the acute effects of vaping e-hookah, with and without nicotine, as compared with sham on endothelial function assessed by brachial artery flow-mediated dilation (FMD), among 18 overtly healthy young adults. To determine the role of changes in circulating factors in plasma on endothelial cell function, human umbilical vein endothelial cells (HUVECs) were cultured with participants' plasma, and acetylcholine-stimulated nitric oxide (NO) production and basal reactive oxygen species (ROS) bioactivity were assessed. Plasma nicotine was measured before and after the sessions. E-hookah vaping with nicotine, which acutely increased heart rate (HR) by 8 ± 3 beats/min and mean arterial pressure (MAP) by 7 ± 2 mmHg (means ± SE; P < 0.05), decreased endothelial-dependent FMD by 1.57 ± 0.19%Δ (P = 0.001), indicating impairment in endothelial function. Vaping e-hookah without nicotine, which mildly increased hemodynamics (HR, 2 ± 2 beats/min and MAP 1 ± 1 mmHg; P = ns), did not significantly impair endothelial function. No changes were observed after sham vaping. HUVECs cultured with participants' plasma after versus before e-hookah vaping with nicotine, but not without nicotine or sham vaping, exhibited reductions in endothelial cell NO bioavailability and increases in ROS bioactivity (P < 0.05). Plasma nicotine concentrations increased after vaping e-hookah with nicotine (6.7 ± 1.8 ng/mL; P = 0.002), whereas no changes were observed after vaping e-hookah without nicotine or sham (P = ns). Acute e-hookah vaping induces endothelial dysfunction by impairing NO bioavailability associated with increased ROS production, and these effects are attributable to nicotine, not to nonnicotine constituents, present in the flavored e-liquid.NEW & NOTEWORTHY Despite safety claims heavily advertised by the hookah tobacco industry, acute e-hookah vaping induces in vivo endothelial dysfunction by impairing ex vivo NO bioavailability associated with increased ROS production. These effects are attributable to nicotine, not to nonnicotine constituents, present in the flavored e-liquid.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Cachimbos de Água , Vaping , Fumar Cachimbo de Água , Adulto Jovem , Humanos , Vaping/efeitos adversos , Nicotina , Células Endoteliais , Espécies Reativas de Oxigênio , Estudos Cross-Over
2.
Am J Physiol Heart Circ Physiol ; 326(1): H123-H137, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921669

RESUMO

Vascular aging, featuring endothelial dysfunction and large elastic artery stiffening, is a major risk factor for the development of age-associated cardiovascular diseases (CVDs). Vascular aging is largely mediated by an excessive production of reactive oxygen species (ROS) and increased inflammation leading to reduced bioavailability of the vasodilatory molecule nitric oxide and remodeling of the arterial wall. Other cellular mechanisms (i.e., mitochondrial dysfunction, impaired stress response, deregulated nutrient sensing, cellular senescence), termed "hallmarks" or "pillars" of aging, may also contribute to vascular aging. Gonadal aging, which largely impacts women but also impacts some men, modulates the vascular aging process. Regular physical activity, including both aerobic and resistance exercise, is a first-line strategy for reducing CVD risk with aging. Although exercise is an effective intervention to counter vascular aging, there is considerable variation in the vascular response to exercise training with aging. Aerobic exercise improves large elastic artery stiffening in both middle-aged/older men and women and enhances endothelial function in middle-aged/older men by reducing oxidative stress and inflammation and preserving nitric oxide bioavailability; however, similar aerobic exercise training improvements are not consistently observed in estrogen-deficient postmenopausal women. Sex differences in adaptations to exercise may be related to gonadal aging and declines in estrogen in women that influence cellular-molecular mechanisms, disconnecting favorable signaling in the vasculature induced by exercise training. The present review will summarize the current state of knowledge on vascular adaptations to regular aerobic and resistance exercise with aging, the underlying mechanisms involved, and the moderating role of biological sex.


Assuntos
Doenças Cardiovasculares , Rigidez Vascular , Pessoa de Meia-Idade , Feminino , Humanos , Masculino , Idoso , Óxido Nítrico , Endotélio Vascular , Envelhecimento/fisiologia , Exercício Físico/fisiologia , Doenças Cardiovasculares/prevenção & controle , Inflamação , Estrogênios , Rigidez Vascular/fisiologia
3.
Front Physiol ; 13: 980783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187760

RESUMO

Background: Cardiovascular disease (CVD) is the leading cause of death worldwide and aging is the primary risk factor for the development of CVD. The increased risk of CVD with aging is largely mediated by the development of vascular dysfunction. Excessive production of mitochondrial reactive oxygen species (mtROS) is a key mechanism of age-related vascular dysfunction. Therefore, establishing the efficacy of therapies to reduce mtROS to improve vascular function with aging is of high biomedical importance. Previously, in a small, randomized, crossover-design pilot clinical trial, our laboratory obtained initial evidence that chronic oral supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular function in healthy older adults. Here, we describe the protocol for an ongoing R01-funded phase IIa clinical trial to establish the efficacy of MitoQ as a therapy to improve vascular function in older adults (ClinicalTrials.gov Identifier: NCT04851288). Outcomes: The primary outcome of the study is nitric oxide (NO)-mediated endothelium-dependent dilation (EDD) as assessed by brachial artery flow-mediated dilation (FMDBA). Secondary outcomes include mtROS-mediated suppression of EDD, aortic stiffness as measured by carotid-femoral pulse wave velocity, carotid compliance and ß-stiffness index, and intima media thickness. Other outcomes include the assessment of endothelial mitochondrial health and oxidative stress in endothelial cells obtained by endovascular biopsy; the effect of altered circulating factors following MitoQ treatment on endothelial cell NO bioavailability and whole cell and mitochondrial reactive oxygen species production ex vivo; and circulating markers of oxidative stress, antioxidant status, and inflammation. Methods: We are conducting a randomized, placebo-controlled, double-blind, parallel group, phase IIa clinical trial in 90 (45/group) healthy older men and women 60 years of age or older. Participants complete baseline testing and are then randomized to either 3 months of oral MitoQ (20 mg; once daily) or placebo supplementation. Outcome measures are assessed at the midpoint of treatment, i.e., 6 weeks, and again at the conclusion of treatment. Discussion: This study is designed to establish the efficacy of chronic supplementation with the mitochondrial-targeted antioxidant MitoQ for improving vascular endothelial function and reducing large elastic artery stiffness in older adults, and to investigate the mechanisms by which MitoQ supplementation improves endothelial function.

4.
Exp Gerontol ; 157: 111632, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822971

RESUMO

It is unknown if consumption of a Western diet (WD; high-fat/sucrose), versus a non-WD (healthy diet), accelerates declines in physical function over the adult lifespan, and whether regular voluntary activity attenuates age- and WD-associated declines in function. Accordingly, we studied 4 cohorts of mice that consumed either normal chow [NC] or WD with or without access (sedentary, Sed) to voluntary wheel running [VWR] beginning at 3 mo of age. We assessed coordination, grip strength and endurance every 6 mo throughout life, and measured skeletal muscle mass and inflammation at 3 pre-determined ages (6-7, 13-14 and 19-20 mo). Age-related declines (% change 3-18 mo) in physical function were accelerated in WD-Sed versus NC-Sed (coordination: +47 ± 5%; grip strength: +18 ± 2%; endurance: +32 ± 5%; all p < 0.05). VWR attenuated declines in physical function within diet group (coordination: -31 ± 3% with WD-VWR; -18 ± 2% with NC-VWR; grip strength: -26 ± 2% with WD-VWR; -24 ± 2% with NC-VWR; endurance: -48 ± 4% with WD-VWR; -23 ± 6% with NC-VWR; all p < 0.05). Skeletal muscle mass loss and pro-inflammatory cytokine abundance were exacerbated by WD throughout life (mass: NC-Sed [-]7-28%, WD-Sed [-]17-40%; inflammation: NC-Sed [+]40-65%, WD-Sed [+]40-84%, all p < 0.05 versus NC-Sed), and attenuated by VWR (mass: NC-VWR, [-]0-10%, WD-VWR [-]0-10%; inflammation: NC-VWR [+]0-30%, WD-VWR [+]0-42%, all p < 0.05 versus diet-matched Sed group). Our results depict the temporal impairment of physical function over the lifespan in mice, acceleration of dysfunction with WD, the protective effects of voluntary exercise, and the potential associations with skeletal muscle mass and inflammation.


Assuntos
Dieta Ocidental , Condicionamento Físico Animal , Animais , Dieta Ocidental/efeitos adversos , Inflamação , Camundongos , Atividade Motora/fisiologia , Músculo Esquelético , Condicionamento Físico Animal/fisiologia
5.
Aging Cancer ; 2(1-2): 45-69, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34212156

RESUMO

Cardiovascular diseases (CVD) are the leading cause of death worldwide, and age is by far the greatest risk factor for developing CVD. Vascular dysfunction, including endothelial dysfunction and arterial stiffening, is responsible for much of the increase in CVD risk with aging. A key mechanism involved in vascular dysfunction with aging is oxidative stress, which reduces the bioavailability of nitric oxide (NO) and induces adverse changes to the extracellular matrix of the arterial wall (e.g., elastin fragmentation/degradation, collagen deposition) and an increase in advanced glycation end products, which form crosslinks in arterial wall structural proteins. Although vascular dysfunction and CVD are most prevalent in older adults, several conditions can "accelerate" these events at any age. One such factor is chemotherapy with anthracyclines, such as doxorubicin (DOXO), to combat common forms of cancer. Children, adolescents and young adults treated with these chemotherapeutic agents demonstrate impaired vascular function and an increased risk of future CVD development compared with healthy age-matched controls. Anthracycline treatment also worsens vascular dysfunction in mid-life (50-64 years of age) and older (65 and older) adults such that endothelial dysfunction and arterial stiffness are greater compared to age-matched controls. Collectively, these observations indicate that use of anthracycline chemotherapeutic agents induce a vascular aging-like phenotype and that the latter contributes to premature CVD in cancer survivors exposed to these agents. Here, we review the existing literature supporting these ideas, discuss potential mechanisms as well as interventions that may protect arteries from these adverse effects, identify research gaps and make recommendations for future research.

6.
Exp Gerontol ; 152: 111451, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34147619

RESUMO

Cancer is one of the most common age-related diseases, and over one-third of cancer patients will receive chemotherapy. One frequently reported side effect of chemotherapeutic agents like doxorubicin (Doxo) is impaired cognitive function, commonly known as "chemotherapy-induced cognitive impairment (CICI)", which may mimic accelerated brain aging. The biological mechanisms underlying the adverse effects of Doxo on the brain are unclear but could involve mitochondrial dysfunction. Here, we characterized brain (hippocampal) transcriptome and cognitive/behavioral changes in young mice treated with Doxo +/- the mitochondrial therapeutic MitoQ. We found that Doxo altered transcriptome/biological processes related to synaptic transmission and neurotransmitter function, neuronal health and behavior, and that these gene expression changes were: 1) similar to key differences observed in transcriptome data on brain aging; and 2) associated with related, aging-like behavioral differences, such as decreased exploration time and impaired novel object recognition test (NOR, an index of learning/memory) performance. Interestingly, MitoQ partially prevented Doxo-induced transcriptome changes in the brain, but it had no effect on behavior or cognitive function. Collectively, our findings are consistent with the idea that chemotherapeutic agents could induce neuronal/gene expression and behavioral changes similar to those that occur during brain aging. In this context, mitochondrial therapeutics may have potential as treatments for CICI at the biological level, but their effects on behavior/cognitive function require further investigation.


Assuntos
Disfunção Cognitiva , Transcriptoma , Envelhecimento/genética , Animais , Encéfalo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/genética , Doxorrubicina , Humanos , Camundongos
8.
J Am Heart Assoc ; 10(5): e019271, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33615833

RESUMO

Background Electronic hookah (e-hookah) vaping has increased in popularity among youth, who endorse unsubstantiated claims that flavored aerosol is detoxified as it passes through water. However, e-hookahs deliver nicotine by creating an aerosol of fine and ultrafine particles and other oxidants that may reduce the bioavailability of nitric oxide and impair endothelial function secondary to formation of oxygen-derived free radicals. Methods and Results We examined the acute effects of e-hookah vaping on endothelial function, and the extent to which increased oxidative stress contributes to the vaping-induced vascular impairment. Twenty-six healthy young adult habitual hookah smokers were invited to vape a 30-minute e-hookah session to evaluate the impact on endothelial function measured by brachial artery flow-mediated dilation (FMD). To test for oxidative stress mediation, plasma total antioxidant capacity levels were measured and the effect of e-hookah vaping on FMD was examined before and after intravenous infusion of the antioxidant ascorbic acid (n=11). Plasma nicotine and exhaled carbon monoxide levels were measured before and after the vaping session. Measurements were performed before and after sham-vaping control experiments (n=10). E-hookah vaping, which increased plasma nicotine (+4.93±0.92 ng/mL, P<0.001; mean±SE) with no changes in exhaled carbon monoxide (-0.15±0.17 ppm; P=0.479), increased mean arterial pressure (11±1 mm Hg, P<0.001) and acutely decreased FMD from 5.79±0.58% to 4.39±0.46% (P<0.001). Ascorbic acid infusion, which increased plasma total antioxidant capacity 5-fold, increased FMD at baseline (5.98±0.66% versus 9.46±0.87%, P<0.001), and prevented the acute FMD impairment by e-hookah vaping (9.46±0.87% versus 8.74±0.84%, P=0.002). All parameters were unchanged during sham studies. Conclusions E-hookah vaping has adverse effects on vascular function, likely mediated by oxidative stress, which overtime could accelerate development and progression of cardiovascular disease. Registration URL: https://ClinicalTrials.gov. Unique identifier: NCT03690427.


Assuntos
Ácido Ascórbico/farmacologia , Artéria Braquial/fisiopatologia , Endotélio Vascular/fisiopatologia , Cachimbos de Água , Doenças Vasculares/prevenção & controle , Vasodilatação/fisiologia , Fumar Cachimbo de Água/efeitos adversos , Adulto , Antioxidantes/farmacologia , Endotélio Vascular/efeitos dos fármacos , Feminino , Humanos , Masculino , Estresse Oxidativo , Doenças Vasculares/etiologia , Doenças Vasculares/fisiopatologia , Adulto Jovem
9.
J Gerontol A Biol Sci Med Sci ; 76(5): 805-810, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257951

RESUMO

Transcripts from noncoding repetitive elements (REs) in the genome may be involved in aging. However, they are often ignored in transcriptome studies on healthspan and lifespan, and their role in healthy aging interventions has not been characterized. Here, we analyze REs in RNA-seq datasets from mice subjected to robust healthspan- and lifespan-increasing interventions including calorie restriction, rapamycin, acarbose, 17-α-estradiol, and Protandim. We also examine RE transcripts in long-lived transgenic mice, and in mice subjected to a high-fat diet, and we use RNA-seq to investigate the influence of aerobic exercise on RE transcripts with aging in humans. We find that (a) healthy aging interventions/behaviors globally reduce RE transcripts, whereas aging and high-fat diet (an age-accelerating treatment) increase RE expression; and (b) reduced RE expression with healthy aging interventions is associated with biological/physiological processes mechanistically linked with aging. Our results suggest that RE transcript dysregulation and suppression are likely novel mechanisms underlying aging and healthy aging interventions, respectively.


Assuntos
Elementos de DNA Transponíveis , Envelhecimento Saudável , RNA não Traduzido , Sequências Repetitivas de Ácido Nucleico , Acarbose/farmacologia , Adolescente , Idoso , Animais , Restrição Calórica , Dieta Hiperlipídica , Medicamentos de Ervas Chinesas/farmacologia , Estradiol/farmacologia , Humanos , Camundongos , Pessoa de Meia-Idade , Sirolimo/farmacologia , Adulto Jovem
10.
J Am Heart Assoc ; 9(17): e016625, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32815446

RESUMO

Background Impaired endothelial function is thought to contribute to the increased cardiovascular risk associated with above-normal blood pressure (BP). However, the association between endothelial function and BP classified by 2017 American College of Cardiology/American Heart Association guidelines is unknown. Our objective was to determine if endothelial function decreases in midlife/older adults across the 2017 American College of Cardiology/American Heart Association guidelines BP classifications and identify associated mechanisms of action. Methods and Results A retrospective analysis of endothelial function (brachial artery flow-mediated dilation) from 988 midlife/older adults (aged 50+ years) stratified by BP status (normal BP; elevated BP; stage 1 hypertension; stage 2 hypertension) was performed. Endothelium-independent dilation (sublingual nitroglycerin), reactive oxygen species-mediated suppression of endothelial function (∆brachial artery flow-mediated dilation with vitamin C infusion), and endothelial cell and plasma markers of oxidative stress and inflammation were assessed in subgroups. Compared with normal BP (n=411), brachial artery flow-mediated dilation was 12% (P=0.04), 15% (P<0.01) and 20% (P<0.01) lower with elevated BP (n=173), stage 1 hypertension (n=248) and stage 2 hypertension (n=156), respectively, whereas endothelium-independent dilation did not differ (P=0.14). Vitamin C infusion increased brachial artery flow-mediated dilation in those with above-normal BP (P≤0.02) but not normal BP (P=0.11). Endothelial cell p47phox (P<0.01), a marker of superoxide/reactive oxygen species-generating nicotinamide adenine dinucleotide phosphate oxidase, and circulating interleukin-6 concentrations (P=0.01) were higher in individuals with above-normal BP. Conclusions Vascular endothelial function is progressively impaired with increasing BP in otherwise healthy adults classified by 2017 American College of Cardiology/American Heart Association guidelines. Impaired endothelial function with above-normal BP is mediated by excessive reactive oxygen species signaling associated with increased endothelial expression of nicotinamide adenine dinucleotide phosphate oxidase and circulating interleukin-6.


Assuntos
Pressão Sanguínea/fisiologia , Artéria Braquial/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Endotélio Vascular/fisiopatologia , Hipertensão/classificação , Fluxo Sanguíneo Regional/efeitos dos fármacos , Idoso , American Heart Association , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Cardiologia/organização & administração , Doenças Cardiovasculares/epidemiologia , Estudos de Casos e Controles , Estudos Transversais , Células Endoteliais/metabolismo , Feminino , Guias como Assunto , Humanos , Hipertensão/fisiopatologia , Inflamação/metabolismo , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , NADPH Oxidases/metabolismo , Nitroglicerina/administração & dosagem , Nitroglicerina/farmacologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Estudos Retrospectivos , Estados Unidos/epidemiologia , Vasodilatação/efeitos dos fármacos
11.
J Investig Med ; 68(7): 1271-1275, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32699180

RESUMO

Increased aortic stiffness may contribute to kidney damage by transferring excessive flow pulsatility to susceptible renal microvasculature, leading to constriction or vessel loss. We previously demonstrated that 5 weeks of dietary sodium restriction (DSR) reduces large-elastic artery stiffness as well as blood pressure in healthy middle-aged/older adults with moderately elevated systolic blood pressure (SBP) who are free from chronic kidney disease (CKD). We hypothesized that DSR in this cohort would also reduce urinary concentrations of renal tubular injury biomarkers, which predict incident CKD in the general population. We performed a post hoc analysis using stored 24 hours urine samples collected in 13 participants as part of a randomized, double-blind, crossover clinical trial of DSR (low sodium (LS) target: 50 mmol/day; normal sodium (NS) target: 150 mmol/day). Participants were 61±2 (mean±SEM) years (8 M/5 F) with a baseline blood pressure of 139±2/82±2 mm Hg and an estimated glomerular filtration rate of 79±3 mL/min/1.73 m2 Twenty-four hour urinary sodium excretion was reduced from 149±7 to 66±8 mmol/day during week 5. Despite having preserved kidney function, participants had a 31% reduction in urinary neutrophil gelatinase-associated lipocalin concentrations with just 5 weeks of DSR (LS: 2.8±0.6 vs NS: 4.2±0.8 ng/mL, p<0.05). Results were similar when normalized to urinary creatinine (urinary creatinine did not change between conditions). Concentrations of another kidney tubular injury biomarker, kidney injury molecule-1, were below the detectable limit in all but one sample. In conclusion, DSR reduces an established clinical biomarker of kidney tubular damage in adults with moderately elevated SBP who are free from prevalent kidney disease.


Assuntos
Pressão Sanguínea , Dieta Hipossódica , Lipocalina-2/urina , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/urina , Sístole , Idoso , Feminino , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
12.
J Appl Physiol (1985) ; 128(4): 739-747, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32134713

RESUMO

Regular exercise enhances endothelial function in older men, but not consistently in estrogen-deficient postmenopausal women. Estradiol treatment improves basal endothelial function and restores improvements in endothelial function (flow-mediated dilation, FMD) to aerobic exercise training in postmenopausal women; however, estradiol treatment is controversial. Resveratrol, an estrogen receptor ligand, enhances exercise training effects on cardiovascular function and nitric oxide (NO) release in animal models, but impairs exercise training effects in men. We conducted a randomized cross-over, double-blinded, placebo-controlled pilot study to determine whether acute (single dose) resveratrol (250-mg tablet) or estradiol (0.05 mg/day transdermal patch) treatment enhances FMD at rest and after a single bout of moderate-intensity aerobic exercise in healthy estrogen-deficient postmenopausal women (n = 15, 58.1 ± 3.2 yr). FMD was measured before and after (30, 60, and 120 min) a 40-min bout of moderate-intensity treadmill exercise (60-75% peak heart rate) under the respective conditions (separated by 1-2 wk). FMD was higher (P < 0.05) before exercise and at all post-exercise time points in the resveratrol and estradiol conditions compared to placebo. FMD was increased from baseline by 120 min postexercise in the estradiol condition (P < 0.001), but not resveratrol or PL conditions. Consistent with our previous findings, estradiol also enhances endothelial function in response to acute endurance exercise. Although resveratrol improved basal FMD, there was no apparent enhancement of FMD to acute exercise and, therefore, may not act as an estradiol mimetic.NEW & NOTEWORTHY The benefits of endurance exercise training on endothelial function are diminished in estrogen-deficient postmenopausal women, but estradiol treatment appears to restore improvements in endothelial function in this group. We show that basal endothelial function is enhanced with both acute estradiol and resveratrol treatments in estrogen-deficient postmenopausal women, but endothelial function is only enhanced following acute endurance exercise with estradiol treatment.


Assuntos
Artéria Braquial , Estradiol , Idoso , Endotélio Vascular , Estrogênios , Feminino , Humanos , Masculino , Pós-Menopausa , Resveratrol/farmacologia , Vasodilatação
13.
Aging Cell ; 19(1): e13074, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31755162

RESUMO

Aging is associated with vascular endothelial dysfunction, reduced exercise tolerance, and impaired whole-body glucose metabolism. Interleukin-37 (IL-37), an anti-inflammatory cytokine of the interleukin-1 family, exerts salutary physiological effects in young mice independent of its inflammation-suppressing properties. Here, we assess the efficacy of IL-37 treatment for improving physiological function in older age. Old mice (26-28 months) received daily intraperitoneal injections of recombinant human IL-37 (recIL-37; 1 µg/200 ml PBS) or vehicle (200 ml PBS) for 10-14 days. Vascular endothelial function (ex vivo carotid artery dilation to increasing doses of acetylcholine, ACh) was enhanced in recIL-37 vs. vehicle-treated mice via increased nitric oxide (NO) bioavailability (all p < .05); this effect was accompanied by enhanced ACh-stimulated NO production and reduced levels of reactive oxygen species in endothelial cells cultured with plasma from IL-37-treated animals (p < .05 vs. vehicle plasma). RecIL-37 treatment increased endurance exercise capacity by 2.4-fold, which was accompanied by a 2.9-fold increase in the phosphorylated AMP-activated kinase (AMPK) to AMPK ratio (i.e., AMPK activation) in quadriceps muscle. RecIL-37 treatment also improved whole-body insulin sensitivity and glucose tolerance (p < .05 vs. vehicle). Improvements in physiological function occurred without significant changes in plasma, aortic, and skeletal muscle pro-inflammatory proteins (under resting conditions), whereas pro-/anti-inflammatory IL-6 was greater in recIL-37-treated animals. Plasma metabolomics analysis revealed that recIL-37 treatment altered metabolites related to pathways involved in NO synthesis (e.g., increased L-arginine and citrulline/arginine ratio) and fatty acid metabolism (e.g., increased pantothenol and free fatty acids). Our findings provide experimental support for IL-37 therapy as a novel strategy to improve diverse physiological functions in old age.


Assuntos
Células Endoteliais/metabolismo , Tolerância ao Exercício/efeitos dos fármacos , Glucose/metabolismo , Interleucina-1/uso terapêutico , Animais , Humanos , Interleucina-1/farmacologia , Masculino , Camundongos
14.
J Biol Chem ; 293(37): 14224-14236, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30006351

RESUMO

Obesity and the metabolic syndrome are characterized by chronic, low-grade inflammation mainly originating from expanding adipose tissue and resulting in inhibition of insulin signaling and disruption of glycemic control. Transgenic mice expressing human interleukin 37 (IL-37), an anti-inflammatory cytokine of the IL-1 family, are protected against metabolic syndrome when fed a high-fat diet (HFD) containing 45% fat. Here, we examined whether treatment with recombinant IL-37 ameliorates established insulin resistance and obesity-induced inflammation. WT mice were fed a HFD for 22 weeks and then treated daily with IL-37 (1 µg/mouse) during the last 2 weeks. Compared with vehicle only-treated mice, IL-37-treated mice exhibited reduced insulin in the plasma and had significant improvements in glucose tolerance and in insulin content of the islets. The IL-37 treatment also increased the levels of circulating IL-1 receptor antagonist. Cultured adipose tissues revealed that IL-37 treatment significantly decreases spontaneous secretions of IL-1ß, tumor necrosis factor α (TNFα), and CXC motif chemokine ligand 1 (CXCL-1). We also fed mice a 60% fat diet with concomitant daily IL-37 for 2 weeks and observed decreased secretion of IL-1ß, TNFα, and IL-6 and reduced intracellular levels of IL-1α in the liver and adipose tissue, along with improved plasma glucose clearance. Compared with vehicle treatment, these IL-37-treated mice had no apparent weight gain. In human adipose tissue cultures, the presence of 50 pm IL-37 reduced spontaneous release of TNFα and 50% of lipopolysaccharide-induced TNFα. These findings indicate that IL-37's anti-inflammatory effects can ameliorate established metabolic disturbances during obesity.


Assuntos
Tecido Adiposo/metabolismo , Citocinas/biossíntese , Mediadores da Inflamação/metabolismo , Resistência à Insulina , Interleucina-1/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Obesidade/fisiopatologia , Animais , Biomarcadores/sangue , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Humanos , Interleucina-1/genética , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Camundongos , Camundongos Transgênicos , Receptores Tipo I de Interleucina-1/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico
15.
Hypertension ; 71(6): 1056-1063, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29661838

RESUMO

Excess reactive oxygen species production by mitochondria is a key mechanism of age-related vascular dysfunction. Our laboratory has shown that supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular endothelial function by reducing mitochondrial reactive oxygen species and ameliorates arterial stiffening in old mice, but the effects in humans are unknown. Here, we sought to translate our preclinical findings to humans and determine the safety and efficacy of MitoQ. Twenty healthy older adults (60-79 years) with impaired endothelial function (brachial artery flow-mediated dilation <6%) underwent 6 weeks of oral supplementation with MitoQ (20 mg/d) or placebo in a randomized, placebo-controlled, double-blind, crossover design study. MitoQ was well tolerated, and plasma MitoQ was higher after the treatment versus placebo period (P<0.05). Brachial artery flow-mediated dilation was 42% higher after MitoQ versus placebo (P<0.05); the improvement was associated with amelioration of mitochondrial reactive oxygen species-related suppression of endothelial function (assessed as the increase in flow-mediated dilation with acute, supratherapeutic MitoQ [160 mg] administration; n=9; P<0.05). Aortic stiffness (carotid-femoral pulse wave velocity) was lower after MitoQ versus placebo (P<0.05) in participants with elevated baseline levels (carotid-femoral pulse wave velocity >7.60 m/s; n=11). Plasma oxidized LDL (low-density lipoprotein), a marker of oxidative stress, also was lower after MitoQ versus placebo (P<0.05). Participant characteristics, endothelium-independent dilation (sublingual nitroglycerin), and circulating markers of inflammation were not different (all P>0.1). These findings in humans extend earlier preclinical observations and suggest that MitoQ and other therapeutic strategies targeting mitochondrial reactive oxygen species may hold promise for treating age-related vascular dysfunction. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02597023.


Assuntos
Antioxidantes/administração & dosagem , Artéria Braquial/fisiologia , Endotélio Vascular/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Rigidez Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Idoso , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Endotélio Vascular/efeitos dos fármacos , Feminino , Seguimentos , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo
16.
Am J Physiol Heart Circ Physiol ; 313(5): H890-H895, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971843

RESUMO

Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P < 0.05), respectively, in ECs obtained from antecubital veins of older sedentary (60 ± 1 yr, n = 12) versus young sedentary (22 ± 1 yr, n = 9) adults. These age-related differences were not present (all P > 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 (r = -0.49, P = 0.003), p21 (r = -0.38, P = 0.03), and p16 (r = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P < 0.05), respectively, in ECs sampled from brachial arteries of healthy older sedentary (63 ± 1 yr, n = 18) versus young sedentary (25 ± 1 yr, n = 9) adults; age-related changes in arterial EC p53 and p21 expression were not observed (P > 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age.NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Células Endoteliais/fisiologia , Endotélio Vascular/fisiologia , Exercício Físico/fisiologia , Adolescente , Adulto , Idoso , Feminino , Hábitos , Voluntários Saudáveis , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Proteína Oncogênica p21(ras)/biossíntese , Proteína Oncogênica p21(ras)/genética , Comportamento Sedentário , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética , Vasodilatação/fisiologia , Adulto Jovem
17.
J Appl Physiol (1985) ; 122(1): 11-19, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27834671

RESUMO

Aging causes micro- and macrovascular endothelial dysfunction, as assessed by endothelium-dependent dilation (EDD), which can be prevented and reversed by habitual aerobic exercise (AE) in men. However, in estrogen-deficient postmenopausal women, whole forearm microvascular EDD has not been studied, and a beneficial effect of AE on macrovascular EDD has not been consistently shown. We assessed forearm blood flow in response to brachial artery infusions of acetylcholine (FBFACh), a measure of whole forearm microvascular EDD, and brachial artery flow-mediated dilation (FMD), a measure of macrovascular EDD, in 12 premenopausal sedentary women (Pre-S; 24 ± 1 yr; V̇o2max = 37.5 ± 1.6 ml·kg-1·min-1), 25 estrogen-deficient postmenopausal sedentary women (Post-S; 62 ± 1 yr; V̇o2max = 24.7 ± 0.9 ml·kg-1·min-1), and 16 estrogen-deficient postmenopausal AE-trained women (Post-AE; 59 ± 1 yr; V̇o2max = 40.4 ± 1.4 ml·kg-1·min-1). FBFACh was lower in Post-S and Post-AE compared with Pre-S women (135 ± 9 and 116 ± 17 vs. 193 ± 21 AUC, respectively, both P < 0.008), whereas Post-S and Post-AE women were not different (P = 0.3). Brachial artery FMD was 34% (5.73 ± 0.67%) and 45% (4.79 ± 0.57%) lower in Post-S and Post-AE, respectively, vs. Pre-S women (8.69 ± 0.95%, both P ≤ 0.01), but not different between Post-S and Post-AE women (P = 0.3). Post-AE women had lower circulating C-reactive protein and oxidized low-density lipoprotein compared with Post-S women (0.5 ± 0.1 vs. 1.1 ± 0.2 mg/l and 40 ± 4 vs. 55 ± 3 U/l, respectively, both P = 0.01), but these markers were not correlated to FBFACh (P = 0.3) or brachial artery FMD (P = 0.8). These findings are consistent with the idea that habitual AE does not protect against age/menopause-related whole forearm micro- and macrovascular endothelial dysfunction in healthy nonobese estrogen-deficient postmenopausal women, despite being associated with lower systemic markers of inflammation and oxidative stress. NEW & NOTEWORTHY: This is the first study to demonstrate that habitual aerobic exercise may not protect against age/menopause-related whole forearm microvascular endothelial dysfunction in healthy nonobese estrogen-deficient postmenopausal women, consistent with recent findings regarding macrovascular endothelial function. This is in contrast to what is observed in healthy middle-aged and older aerobic exercise-trained men.


Assuntos
Endotélio Vascular/fisiologia , Estrogênios/metabolismo , Exercício Físico/fisiologia , Pós-Menopausa/fisiologia , Adulto , Envelhecimento/fisiologia , Artéria Braquial/metabolismo , Artéria Braquial/fisiologia , Proteína C-Reativa/metabolismo , Estudos Transversais , Endotélio Vascular/metabolismo , Feminino , Antebraço/irrigação sanguínea , Antebraço/fisiologia , Humanos , Lipoproteínas LDL/metabolismo , Pessoa de Meia-Idade , Pós-Menopausa/metabolismo , Pré-Menopausa/metabolismo , Pré-Menopausa/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Comportamento Sedentário , Doenças Vasculares/metabolismo , Doenças Vasculares/fisiopatologia , Vasodilatação/fisiologia , Adulto Jovem
18.
Aging Cell ; 16(1): 17-26, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27660040

RESUMO

Inhibition of mammalian target of rapamycin, mTOR, extends lifespan and reduces age-related disease. It is not known what role mTOR plays in the arterial aging phenotype or if mTOR inhibition by dietary rapamycin ameliorates age-related arterial dysfunction. To explore this, young (3.8 ± 0.6 months) and old (30.3 ± 0.2 months) male B6D2F1 mice were fed a rapamycin supplemented or control diet for 6-8 weeks. Although there were few other notable changes in animal characteristics after rapamycin treatment, we found that glucose tolerance improved in old mice, but was impaired in young mice, after rapamycin supplementation (both P < 0.05). Aging increased mTOR activation in arteries evidenced by elevated S6K phosphorylation (P < 0.01), and this was reversed after rapamycin treatment in old mice (P < 0.05). Aging was also associated with impaired endothelium-dependent dilation (EDD) in the carotid artery (P < 0.05). Rapamycin improved EDD in old mice (P < 0.05). Superoxide production and NADPH oxidase expression were higher in arteries from old compared to young mice (P < 0.05), and rapamycin normalized these (P < 0.05) to levels not different from young mice. Scavenging superoxide improved carotid artery EDD in untreated (P < 0.05), but not rapamycin-treated, old mice. While aging increased large artery stiffness evidenced by increased aortic pulse-wave velocity (PWV) (P < 0.01), rapamycin treatment reduced aortic PWV (P < 0.05) and collagen content (P < 0.05) in old mice. Aortic adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and expression of the cell cycle-related proteins PTEN and p27kip were increased with rapamycin treatment in old mice (all P < 0.05). Lastly, aging resulted in augmentation of the arterial senescence marker, p19 (P < 0.05), and this was ameliorated by rapamycin treatment (P < 0.05). These results demonstrate beneficial effects of rapamycin treatment on arterial function in old mice and suggest these improvements are associated with reduced oxidative stress, AMPK activation and increased expression of proteins involved in the control of the cell cycle.


Assuntos
Envelhecimento/patologia , Ciclo Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Suplementos Nutricionais , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Sirolimo/farmacologia , Adenilato Quinase/metabolismo , Animais , Artérias/efeitos dos fármacos , Artérias/patologia , Artérias/fisiopatologia , Biomarcadores/metabolismo , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Insulina/sangue , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Rigidez Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
19.
Aging (Albany NY) ; 7(11): 1004-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26626856

RESUMO

Advancing age is associated with reductions in nitric oxide bioavailability and changes in metabolic activity, which are implicated in declines in motor and cognitive function. In preclinical models, sodium nitrite supplementation (SN) increases plasma nitrite and improves motor function, whereas other nitric oxide-boosting agents improve cognitive function. This pilot study was designed to translate these findings to middle-aged and older (MA/O) humans to provide proof-of-concept support for larger trials. SN (10 weeks, 80 to 160 mg/day capsules, TheraVasc, Inc.) acutely and chronically increased plasma nitrite and improved performance on measures of motor and cognitive outcomes (all p<0.05 or better) in healthy MA/O adults (62 ± 7 years). Untargeted metabolomics analysis revealed that SN significantly altered 33 (160 mg/day) to 45 (80 mg/day) different metabolites, 13 of which were related to changes in functional outcomes; baseline concentrations of 99 different metabolites predicted functional improvements with SN. This pilot study provides the first evidence that SN improves aspects of motor and cognitive function in healthy MA/O adults, and that these improvements are associated with, and predicted by, the plasma metabolome. Our findings provide the necessary support for larger clinical trials on this promising pharmacological strategy for preserving physiological function with aging.


Assuntos
Cognição/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Nitrito de Sódio/administração & dosagem , Idoso , Suplementos Nutricionais , Feminino , Humanos , Masculino , Metaboloma , Pessoa de Meia-Idade , Projetos Piloto , Nitrito de Sódio/sangue
20.
J Appl Physiol (1985) ; 118(2): 163-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25377884

RESUMO

Aging is associated with motor declines that lead to functional limitations and disability, necessitating the development of therapies to slow or reverse these events. We tested the hypothesis that sodium nitrite supplementation attenuates declines in motor function in older C57BL/6 mice. Motor function was assessed using a battery of tests (grip strength, open-field distance, rota-rod endurance) in old animals (age 20-24 mo) at baseline and after 8 wk of sodium nitrite (old nitrite, n = 22, 50 mg/liter) or no treatment (old control, n = 40), and in young reference animals (3 mo, n = 87). Eight weeks of sodium nitrite supplementation improved grip strength (old nitrite, +12.0 ± 14.9% vs. old control, +1.5 ± 15.2%, P < 0.05) and open field distance (old nitrite, +9.5 ± 7.7%, P < 0.01 vs. old control, -28.1 ± 2.0%) and completely restored rota-rod endurance-run time (old nitrite, +3.2 ± 7.1%, P < 0.01 vs. old control, -21.5 ± 7.2%; old nitrite after treatment P > 0.05 vs. young reference). Inflammatory cytokines were markedly increased in quadriceps of old compared with young reference animals (by ELISA, interleukin-1ß [IL-1ß] 3.86 ± 2.34 vs. 1.11 ± 0.74, P < 0.05; interferon-gamma [INF-γ] 8.31 ± 1.59 vs. 3.99 ± 2.59, P < 0.01; tumor necrosis factor-alpha [TNF-α] 1.69 ± 0.44 vs. 0.76 ± 0.30 pg/ml, P < 0.01), but were reduced to young reference levels after treatment (old nitrite, IL-1ß 0.67 ± 0.95; INF-γ 5.22 ± 2.01, TNF-α 1.21 ± 0.39 pg/ml, P < 0.05 vs. old control, P > 0.05 vs. young reference). Cytokine expression and treatment (old nitrite vs. old control) predicted strength (R(2) = 0.822, P < 0.001, IL-1ß, INF-γ, group), open field distance (R(2) = 0.574, P < 0.01, IL-1ß, group) and endurance run time (R(2) = 0.477, P < 0.05, INF-γ). Our results suggest that sodium nitrite improves motor function in old mice, in part by reducing low-grade inflammation in muscle.


Assuntos
Envelhecimento/efeitos dos fármacos , Inflamação/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Nitrito de Sódio/farmacologia , Animais , Citocinas/metabolismo , Suplementos Nutricionais , Avaliação Pré-Clínica de Medicamentos , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Nitratos/sangue , Nitritos/sangue , Nitrito de Sódio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA